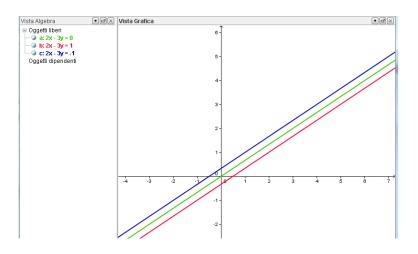
Determina e rappresenta alcune linee di livello delle seguenti funzioni:

1)
$$z = 2x - 3y$$

1)
$$z = 2x - 3y$$
 2) $z = x^2 + y^2 - 4x$ 3) $z = x^2 + y - 4$ 4) $z = x^2 + y - 4x$

3)
$$z = x^2 + y - 4$$

4)
$$z = x^2 + y - 4x$$


Risoluzione:

1) La funzione
$$z = 2x - 3y$$
 ha dominio $D = \{ \forall (x; y) \in \Re x \Re \}$ cioè tutto il piano xy

La linea di livello ottenuta ponendo z = 0 ha $y = \frac{2}{2}x$ (rappresentata in verde nella figura)

La linea di livello ottenuta ponendo z = 1 ha equazione: $y = \frac{2}{3}x - \frac{1}{3}$ (rappresentata in rosso nella figura)

La linea di livello ottenuta ponendo z = -1 ha equazione: $y = \frac{2}{3}x + \frac{1}{3}$ (rappresentata in blu nella figura)

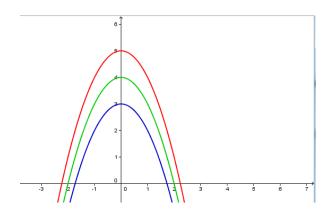
Le linee di livello generiche (z=k) della funzione z = 2x - 3y sono rette di equazione $y = \frac{2}{3}x - \frac{k}{3}$ quindi sono tutte parallele fra di loro con coefficiente angolare 2/3

2) La funzione
$$z = x^2 + y^2 - 4x$$
 ha dominio $D = \{ \forall (x; y) \in \Re x \Re \}$ cioè tutto il piano xy

La linea di livello ottenuta ponendo z=0 ha equazione: $x^2 + y^2 - 4x = 0$ cioè è la circonferenza con centro nel punto (2;0) e raggio 2 (rappresentata in verde nella figura)

La linea di livello ottenuta ponendo z=1 ha equazione: $x^2 + y^2 - 4x = 1$ cioè è la circonferenza di equazione $x^2 + y^2 - 4x - 1 = 0$ con centro nel punto (2;0) e raggio $\sqrt{5}$ (rappresentata in rosso nella figura)

La linea di livello ottenuta ponendo z=-1 ha equazione: $x^2 + y^2 - 4x = -1$ cioè è la circonferenza di equazione $x^2 + y^2 - 4x + 1 = 0$ con centro nel punto (2;0) e raggio $\sqrt{3}$ (rappresentata in blu nella figura)

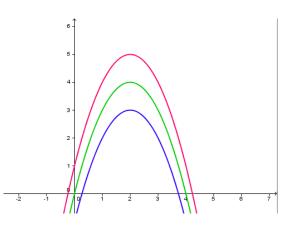

In generale tutte le linee di livello della funzione $z = x^2 + y^2 - 4x$ sono circonferenze con centro nel punto (2;0)

3) La funzione $z = x^2 + y - 4$ ha dominio $D = \{ \forall (x, y) \in \Re x \Re \}$ cioè tutto il piano xy

La linea di livello ottenuta ponendo z=0 ha equazione: $x^2 + y - 4 = 0$ cioè è la parabola di equazione $y = -x^2 + 4$ che ha vertice nel punto (0;4) e incontra l'asse x nei punti (-2;0) e (2;0) (rappresentata in verde nella figura)

La linea di livello ottenuta ponendo z=1 ha equazione: $x^2+y-4=1$ cioè è la parabola di equazione $y=-x^2+5$ che ha vertice nel punto (0;5) e incontra l'asse x nei punti $\left(-\sqrt{5};0\right)$ e $\left(\sqrt{5};0\right)$ (rappresentata in rosso nella figura)

La linea di livello ottenuta ponendo z=-1 ha equazione: $x^2+y-4=-1$ cioè è la parabola di equazione $y=-x^2+3$ che ha vertice nel punto (0;3) e incontra l'asse x nei punti $\left(-\sqrt{3};0\right)$ e $\left(\sqrt{3};0\right)$ (rappresentata in blu nella figura)


In generale tutte le linee di livello della funzione $z = x^2 + y - 4$ sono parabole con vertice sull'asse y

4) La funzione $z = x^2 + y - 4x$ ha dominio $D = \{ \forall (x, y) \in \Re x \Re \}$ cioè tutto il piano xy

La linea di livello ottenuta ponendo z=0 ha equazione: $x^2 + y - 4x = 0$ cioè è la parabola di equazione $y = -x^2 + 4x$ che ha vertice nel punto (2;4) e passa per l'origine e per il punto simmetrico (4;0) (rappresentata in verde nella figura)

La linea di livello ottenuta ponendo z=1 ha equazione: $x^2+y-4x=1$ cioè è la parabola di equazione $y=-x^2+4x+1$ che ha vertice nel punto (2;5) e incontra l'asse y nel punto (0;1) e passa per il punto simmetrico (4;1) (rappresentata in rosso nella figura)

La linea di livello ottenuta ponendo z = -1 ha equazione: $x^2 + y - 4x = -1$ cioè è la parabola di equazione $y = -x^2 + 4x - 1$ che ha vertice nel punto (2;3) e incontra l'asse y nel punto (0;-1) e passa per il punto simmetrico (4;-1) (rappresentata in blu nella figura)

In generale tutte le linee di livello della funzione $z = x^2 + y - 4x$ sono parabole con vertice sulla retta x=2 (che è l'asse di simmetria di tutte le parabole che costituiscono le linee di livello della funzione $z = x^2 + y - 4x$)