1. LE DISEQUAZIONI E LE LORO PROPRIETA

Teoria a pag. 2

Gli intervalli

Stabilisci se i seguenti insiemi sono intervalli e, in caso affermativo, stabilisci se sono aperti o chiusi. Rappresentali sulla retta orientata e utilizzando la notazione con le parentesi quadre.

- 1 {x|x∈R;3≤x≤7}

- [3:7] 3 (7.9)
- [non è un intervallo]

$$[1-5; 8]$$
 $[4]$ $\{x|x \in \mathbb{R}; x \ge 7\}$

$$[7; +\infty[]$$

Rappresenta i seguenti intervalli (o unioni di intervalli) mediante disuguaglianze e mediante parentesi quadre.

$$1-1 \le x \le 6; 1-1; 6[1]$$

$$|x>-3; |-3; +\infty|$$

$$|x \le -2 \ \lor \ x > 8; |-\infty; -2| \ \cup \ |8; +\infty[]|$$

$$[x < -3 \lor -2 < x \le 1;] -\infty; -3[\cup] -2; 1]]$$

$$|x \le 4$$
; $|-\infty, 4$]

Scrivi i seguenti intervalli con le disuguaglianze e con le parentesi quadre. Indica tutti i numeri reali che sono:

- compresi tra -2 e 9, estremi inclusi.
- 12 compresi tra -4 e 5, con -4 incluso e 5 escluso.
- 11 compresi tra = 1/2 e 2, estremi esclusi.
- minori o uguali a 4.

Rappresenta su una stessa retta orientata l'unione o l'intersezione dei seguenti insiemi e scrivi il risultato anche con le disuguaglianze e con le parentesi quadre.

$$[x \ge -4, [-4, +\infty]]$$

$$[-1 \le x \le 4;]-1;4[]$$

$$|\mathbb{R}| = 18 \quad \mathbb{R} \cap \{x \in \mathbb{R} | 1 \le x \le 3\}$$

$$[1 \le x \le 3, [11, 3]]$$

$$|x \ge 1; |1; +\infty||$$

$$[1 \le x \le 3;]1; 3[]$$

Le disequazioni equivalenti

Risolvi le seguenti disequazioni, applicando il primo o il secondo principio di equivalenza. Per ogni passaggio indica quale principio hai applicato.

$$x - 5 < 7;$$
 $2x > 10;$ $-3x < 4;$

$$2x > x + 3$$
;

$$9 > x + 1;$$
 $3x + 2 < 1 + 2x.$

$$\frac{1}{3}x > 2$$

$$5x - 7 \le 6$$

$$\frac{9}{2}x > 1;$$

$$12x > 4x$$
; $\frac{1}{3}x > 2$; $5x = 7 < 6x$; $\frac{9}{2}x > 1$; $12x = 4 < 7$.

2. LE DISEQUAZIONI DI PRIMO GRADO

Le disequazioni intere numeriche

VERO O FALSO?

o) La disequazione
$$(1-\sqrt{3})x \ge 1$$
 ha come soluzione $x \ge \frac{1}{1-\sqrt{3}}$.

Teoria a pag. 4

b) La disequazione
$$\frac{x-2}{\sqrt{2}-\sqrt{3}} > \frac{4}{\sqrt{2}-\sqrt{3}}$$
 ha come soluzione $x < 6$.

c) La soluzione della disequazione
$$x > \frac{4+x}{-3}$$
 è $x > -1$.

ESERCIZIO GUIDA

Risolviamo la seguente disequazione intera numerica:

$$7\Big(\frac{x}{3}+\frac{1}{5}\Big)+(x-4)(x+4)>-\frac{2x+12}{3}-\frac{3}{5}\Big(1-\frac{5}{3}x^3\Big).$$

Eliminiamo le parentesi svolgendo i calcoli:

$$\frac{7}{3}x + \frac{7}{5} + x^2 - 16 \ge -\frac{2x + 12}{3} - \frac{3}{5} + x^2.$$

Eliminiamo i denominatori, moltiplicando entrambi i membri per il loro minimo comune multiplo, cioè 15 (applicando il secondo principio di equivalenza):

$$35x + 21 + 15x^2 - 240 > -10x - 60 - 9 + 15x^2$$

Trasportiamo i termini con l'incognita al primo membro e i termini noti al secondo membro, applicando il primo principio di equivalenza:

$$35x + 15x^2 + 10x - 15x^2 > -21 + 240 - 60 - 9$$

 $45x > 150$

Dividiamo per 45 entrambi i membri, applicando il secondo principio:

$$x > \frac{10}{2}$$
.

L'intervallo delle soluzioni è $\left|\frac{10}{2}; +\infty\right|$.

10

Risolvi le seguenti disequazioni intere numeriche.

24
$$5x - 8 > 3x - 6$$

$$|x > 1|$$
 26 $-\frac{1}{2} + 5(x+1) > 2(\frac{13}{5} + x) + \frac{1}{2}$ $|x > \frac{2}{5}$

25
$$7x - 3 + 5(-2x + 1) < 3x - 7$$
 $\left|x > \frac{3}{2}\right|$ 27 $\frac{3x + 5}{2} - \frac{8x - 5}{7} < \frac{x - 1}{14}$ $\left|x < -\frac{23}{2}\right|$

$$x > \frac{1}{2}$$

$$\frac{3x+5}{2} = \frac{8x-5}{7}$$

$$x < -\frac{23}{2}$$

28
$$(x+1)(x^2-x+1)+(x+1)^2-5x > 5(1-x)+x^2(1+x)+2$$

$$x > \frac{5}{2}$$

29
$$(x-3)^2 + 3(3x+4) > (x+6)(x+3) + 12$$

$$|x \le -\frac{3}{2}|$$

30
$$\frac{x+4}{12} - \frac{x+2}{8} + \frac{5(x-1)}{24} > \frac{x-1}{4} - \frac{x-6}{24}$$

$$[x < -3]$$

31
$$x^2 + 3(x+1) > (x+3)^2 - 3(x+2)$$