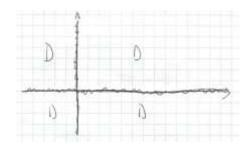

1) Per la produzione di una merce un'impresa sostiene un costo per ogni unità prodotta di 180 euro, una spesa per la manutenzione degli impianti pari al 3% del quadrato del numero di unità prodotte e un costo fisso mensile di 10800 euro. L'impresa non può produrre più di 1000 unità al mese. La domanda della merce prodotta è espressa dalla relazione x = 2400 - 4 p. Qual è il massimo utile mensile?

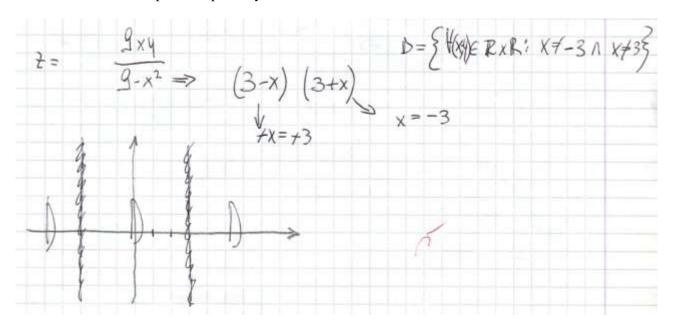
- 2) Per investire il capitale di 5000 euro è possibile scegliere tra le seguenti alternative di ricavo:
 - A) 6500 euro tra 5 anni e 3 mesi
 - B) 2600 euro fra 6 mesi e 2600 euro fra 1 anno
 - C) 500 euro trimestrali posticipate per tre anni

Qual è l'alternativa più conveniente al tasso annuo effettivo del 2%?


	5000 € INVES	TIM ENTO	TASSO 2	%
A)	6500 € TRA S		men	
	VA= 6500 (1,02)	5,25		
	VA= [5858,18]	٦٠		
3)	2600 € Bia	6 men e	2600 € fra	1 owns
	VA= 2600 (1,02)-9:	t 2600 (1,02)-1	
	VA = 2574,38+ VA= 5123,40	2549,02	, si-	
C)	500 € TRINES	STRAU PO	STI CIPATE PE	R 3 ANN(
	VA = 500 1-(1)	00622931)	- 1 1	
	1+1 = (1+1)4	J,W42621331	VA= 5810	,27
	$(1,02)^{\frac{1}{4}} = ((1+i4)^4)$	4		r
	(1,02) = 1+14			
	14= 0,0049 62293	l		
١,	alternatina più	lon beni l	nte è la	*
in lon	nderams il	i jui	lisem eterment peir olto	g qiundi
				C

3) Dopo aver definito il concetto di funzione reale di due variabili reali, determina e descrivi brevemente (eventualmente con un grafico) i campi di esistenza delle funzioni:

$$z = \frac{3y - x}{3xy}$$
 $z = \frac{4xy}{4 + x^2}$ $z = \frac{9xy}{9 - x^2}$ $z = \frac{x + y}{5x^2}$ $z = \frac{x + y}{y^2 + 3x^2}$ $z = \frac{2x + y}{y^2 - x^2}$


Una funzione reale di due variabili reali è una relazione che associa ad ogni coppia ordinata di valori reali (x;y) uno e un solo valore reale z.

Il dominio di
$$z = \frac{3y - x}{3xy}$$
 è $D = \{ \forall (x; y) \in \Re x \Re : x \neq 0 \land y \neq 0 \}$ cioè tutti i punti del piano xy esclusi i due assi

Il dominio di $z = \frac{4xy}{4+x^2}$ è $D = \{ \forall (x; y) \in \Re x \Re \}$ cioè tutti i punti del piano xy

Il dominio di
$$z = \frac{9xy}{9-x^2}$$
 è $D = \{ \forall (x, y) \in \Re x\Re : x \neq -3 \land x \neq 3 \}$ cioè tutti i punti del piano xy escluse le rette x=-3 x=3

$$\frac{1}{2} = \frac{x+y}{5 \times x^{2}} \qquad D = \left\{ \frac{1}{2} \left(x; y \right) \in B \times R : \left(x; y \right) \neq \left(0; o \right) \right\}$$

$$\frac{1}{2} = \frac{x+y}{9^{2} + 3x^{2}} \qquad D = \left\{ \frac{1}{2} \left(x; y \right) \in B \times R : \left(x; y \right) \neq \left(0; o \right) \right\}$$

$$\frac{1}{2} = \frac{2x+y}{9^{2} - x^{2}} \Rightarrow \left(y-x \right) \left(y+x \right) \qquad D = \left\{ \frac{1}{2} \left(x; y \right) \in R \times R : y \neq x \wedge y \neq -x \right\}$$

$$\frac{1}{2} = \frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

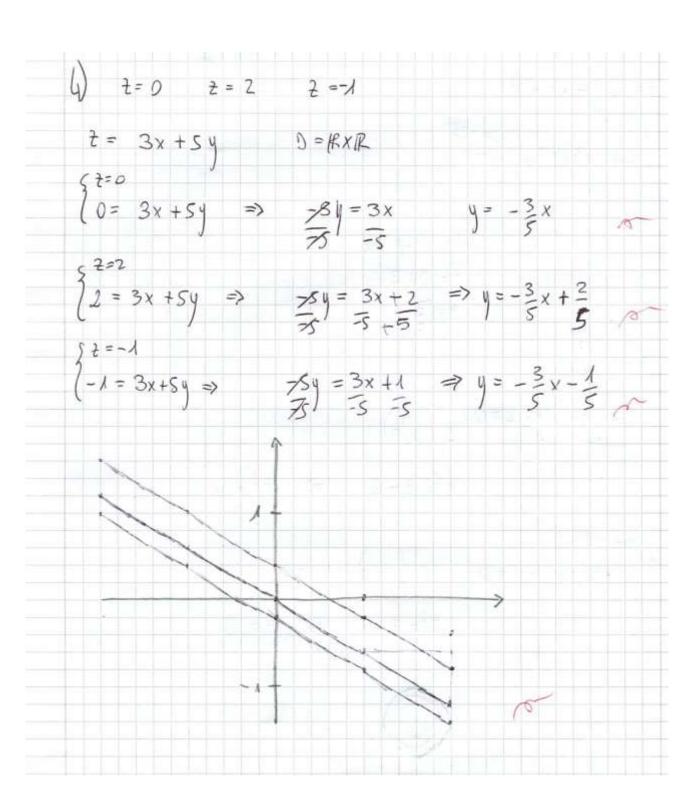
$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

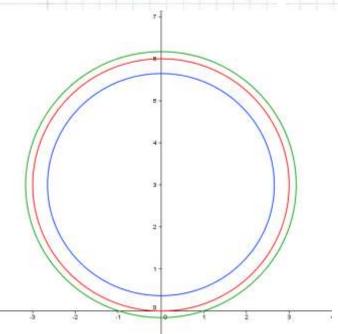
$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(y + x \right) \qquad y \neq -x$$

$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \qquad y \neq -x$$


$$\frac{1}{2} \left(x + y \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \Rightarrow \left(y - x \right) \left(x + y \right) \Rightarrow \left(y - x \right) \Rightarrow \left(y -$$

4) Determina e rappresenta le linee di livello delle seguenti funzioni, ottenute ponendo z = 0 z = 2 z = -1

$$z = 3x + 5y$$


$$z = 6y - x^2 - y^2 z = y + 2x^2$$

$$z = y + 2x^2$$

$$\frac{1}{16} = 0 \quad 16 = 2 \quad 16 = -1$$

$$\frac{1}{16} = 0 \quad 16 = 0$$

